DEAP

基于生理信号的情绪分析数据集

数据类型:开放获取

数据来源:S. Koelstra et al.

创建时间:2011-06-09

数据集编号:No.12132

热度:

非接触式,心率检测,情感识别

自定义协议,非商业可用

Big-data节点

秦玉婷维护

详情

DEAP为情感计算领域的开源数据集,可用于非接触式心率检测。数据集包括问卷评分、中枢和外周生理信号、面部表情等多源数据。采集过程中安排32位受试者在线观看并评价40个音乐视频,同步记录受试者生理信号和部面部表情视频(720×576@50fps),观看结束后受试者在唤醒度、效价、支配度、喜欢度和熟悉度五个维度上进行打分标注。生理信信号包括ECG信号、PPG信号、呼吸信号、皮肤电GSR、皮肤温度、肌电图、眼电图。

访问地址

DEAP

配置方式

1.PPG标签处理

datapath = r'/home/som/lab/seed-yzj/DEAP/data/deap_ppg.csv'
savepath = r'/home/som/lab/seed-yzj/DEAP/data/new_deap_ppg.csv'
write = open(savepath, 'a', newline='', encoding='gb18030')
writer = csv.writer(write)

with open(datapath, 'r', encoding="utf-8") as csvfile:
reader = csv.reader(csvfile)

for row in reader:
    if len(row[0].split('_')[-1])==2:
        newnum=row[0].split('_')[0]+'_trial'+row[0].split('_')[-1]
    else:
        newnum = row[0].split('_')[0] + '_trial0' + row[0].split('_')[-1]

    ppg=[float(i) for i in row[sr*5+1:sr*25+1]]

    detrend_signals = detrend(ppg, 100)
    detrend_signals = detrend_signals.flatten()

    normalized_signals = normalize(detrend_signals)
    resample_signal=signal.resample(normalized_signals,50*20)

    recording =[]
    recording.append(newnum)
    for j in range(len(resample_signal)):
        recording.append(resample_signal[j])

    writer.writerow(recording)

def detrend(signals,param_lambda):
        # https://blog.csdn.net/piaoxuezhong/article/details/79211586
    signal_len = len(signals)
    I = np.identity(signal_len)
    B = np.array([1, -2, 1])
    ones = np.ones((signal_len - 2, 1))
    multi = B * ones
    D2 = np.zeros((signal_len - 2, signal_len))
    for i in range(D2.shape[0]):
        D2[i, i:i + 3] = multi[i]
    tr_D2 = np.transpose(D2)
    multi_D2 = np.dot(tr_D2, D2)
    inverse = I - (np.linalg.inv(I + (multi_D2 * pow(param_lambda, 2))))
    detrend_signals = np.dot(inverse, signals)
    return detrend_signals

def normalize(signals):
    normalized_signals = (signals - np.mean(signals)) / np.std(signals, ddof=1)
    return normalized_signals

组内论文

题目 期刊 作者 地址 代码
Deep Super-Resolution Network for rPPG Information Recovery and Noncontact Heart Rate Estimation IEEE Transactions on Instrumentation and Measurement Zijie Yue, Shuai Ding, Shanlin Yang, Hui Yang, Zhili Li, Youtao Zhang, Yinghui Li